运维开发网

Get了!用Python制作数据预测集成工具

运维开发网 https://www.qedev.com 2020-08-24 08:36 出处:51CTO 作者:小几斤
大数据预测是大数据最核心的应用,是它将传统意义的预测拓展到“现测”。大数据预测的优势体现在,它把一个非常困难的预测问题,转化为一个相对简单的描述问题,而这是传统小数据集根本无法企及的。从预测的角度看,大数据预测所得出的结果不仅仅是用于处理现实业务的简单、客观的结论,更是能用于帮助企业经营的决策。在过去,人们的决策主要是依赖20%的结构化数据,而大数据预测则可以利用另外80%的非结构化数据来做决策。

大数据预测是大数据最核心的应用,是它将传统意义的预测拓展到“现测”。大数据预测的优势体现在,它把一个非常困难的预测问题,转化为一个相对简单的描述问题,而这是传统小数据集根本无法企及的。从预测的角度看,大数据预测所得出的结果不仅仅是用于处理现实业务的简单、客观的结论,更是能用于帮助企业经营的决策。

Get了!用Python制作数据预测集成工具

在过去,人们的决策主要是依赖 20% 的结构化数据,而大数据预测则可以利用另外 80% 的非结构化数据来做决策。大数据预测具有更多的数据维度,更快的数据频度和更广的数据宽度。与小数据时代相比,大数据预测的思维具有 3 大改变:实样而非抽样;预测效率而非精确;相关关系而非因果关系。

而今天我们就将利用python制作可视化的大数据预测部分集成工具,其中数据在这里使用一个实验中的数据。普遍性的应用则直接从文件读取即可。其中的效果图如下:

Get了!用Python制作数据预测集成工具

实验前的准备

首先我们使用的python版本是3.6.5所用到的模块如下:

  • sklearn模块用来创建整个模型训练和保存调用以及算法的搭建框架等等。
  • numpy模块用来处理数据矩阵运算。
  • matplotlib模块用来可视化拟合模型效果。
  • Pillow库用来加载图片至GUI界面。
  • Pandas模块用来读取csv数据文件。
  • Tkinter用来创建GUI窗口程序。

数据的训练和训练的GUI窗口

经过算法比较,发现这里我们选择使用sklearn简单的多元回归进行拟合数据可以达到比较好的效果。

(1)首先是是数据的读取,通过设定选定文件夹函数来读取文件,加载数据的效果:

'''选择文件功能''' 
def selectPath(): 
    # 选择文件path_接收文件地址 
    path_ =tkinter.filedialog.askopenfilename() 
    # 通过replace函数替换绝对文件地址中的/来使文件可被程序读取 
    # 注意:\\转义后为\,所以\\\\转义后为\\ 
    path_ =path_.replace("/", "\\\\") 
    # path设置path_的值 
    path.set(path_) 
    return path 

# 得到的DataFrame读入所有数据 
data = pd.read_excel(FILENAME, header=0, usecols="A,B,C,D,E,F,G,H,I") 
# DataFrame转化为array 
DataArray = data.values 
# 读取已使用年限作为标签 
Y = DataArray[:, 8] 
# 读取其他参数作为自变量,影响因素 
X = DataArray[:, 0:8] 
# 字符串转变为整数 
for i in range(len(Y)): 
    Y[i] = int(Y[i].replace("年", "")) 
X = np.array(X)  # 转化为array 
Y = np.array(Y)  # 转化为array 

root = Tk() 
root.geometry("+500+260") 
# 背景图设置 
canvas = tk.Canvas(root, width=600, height=200, bd=0, highlightthickness=0) 
imgpath = '1.jpg' 
img = Image.open(imgpath) 
photo = ImageTk.PhotoImage(img) 
#背景图大小设置 
canvas.create_image(700, 400, image=photo) 
canvas.pack() 
path = StringVar() 
#标签名称位置 
label1=tk.Label(text = "目标路径:") 
label1.pack() 
e1=tk.Entry( textvariable = path) 
e1.pack() 
bn1=tk.Button(text = "路径选择", command = selectPath) 
bn1.pack() 
bn2=tk.Button(text = "模型训练", command = train) 
bn2.pack() 
bn3=tk.Button(text = "模型预测", command = test) 
bn3.pack() 
#标签按钮等放在背景图上 
canvas.create_window(50, 50, width=150, height=30, 
                     window=label1) 
canvas.create_window(280, 50, width=300, height=30, 
                     window=e1) 
canvas.create_window(510, 50, width=150, height=30, 
                     window=bn1) 
canvas.create_window(50, 100, width=150, height=30, 
                     window=bn2) 
canvas.create_window(510, 100, width=150, height=30, 
                     window=bn3) 

root.mainloop() 

效果如下可见:

Get了!用Python制作数据预测集成工具

(2)然后是数据的拟合和可视化模型效果:

# 模型拟合 
reg = LinearRegression() 
reg.fit(X, Y) 
# 预测效果 
predict = reg.predict(np.array([X[0]])) 
Y_predict = reg.predict(X) 
print(Y_predict) 
# 横坐标 
x_label = [] 
for i in range(len(Y)): 
    x_label.append(i) 
# 绘图 
fig, ax = plt.subplots() 
# 真实值分布散点图 
plt.scatter(x_label, Y) 
# 预测值分布散点图 
plt.scatter(x_label, Y_predict) 
# 预测值拟合直线图 
plt.plot(x_label, Y_predict) 
# 横纵坐标 
ax.set_xlabel('预测值与真实值模型拟合效果图') 
ax.set_ylabel('蓝色为真实值,黄色为预测值') 
# 将绘制的图形显示到tkinter:创建属于root的canvas画布,并将图f置于画布上 
canvas = FigureCanvasTkAgg(fig, master=root) 
canvas.draw()  # 注意show方法已经过时了,这里改用draw 
canvas.get_tk_widget().pack() 
# matplotlib的导航工具栏显示上来(默认是不会显示它的) 
toolbar = NavigationToolbar2Tk(canvas, root) 
toolbar.update() 
canvas._tkcanvas.pack() 
#弹窗显示 
messagebox.showinfo(title='模型情况', message="模型训练完成!") 

其中的效果如下可见:

Get了!用Python制作数据预测集成工具

模型的预测和使用

其中模型的预测主要通过两种方式进行预测,分别是:手动输入单个数据进行预测和读取文件进行预测。

其中手动输入数据进行预测需要设置更多的GUI按钮,其中代码如下:

#子窗口 
LOVE = Toplevel(root) 
LOVE.geometry("+100+260") 
LOVE.title = "模型测试" 
#子窗口各标签名 
label = ["上升沿斜率(v/us)", "下降沿斜率(v/us)", "脉宽(ns)", "低状态电平(mv)", "低电平方差(mv2)x10-3", "高状态电平(v)", "高电平方差(v2)", "信号质量因子"] 
Label(LOVE, text="1、输入参数预测", font=("微软雅黑", 20)).grid(row=0, column=0) 
#标签名称,字体位置 
Label(LOVE, text=label[0], font=("微软雅黑",10)).grid(row=1, column=0) 
Label(LOVE, text=label[1], font=("微软雅黑", 10)).grid(row=1, column=1) 
Label(LOVE, text=label[2], font=("微软雅黑", 10)).grid(row=1, column=2) 
Label(LOVE, text=label[3], font=("微软雅黑", 10)).grid(row=1, column=3) 
Label(LOVE, text=label[4], font=("微软雅黑", 10)).grid(row=1, column=4) 
Label(LOVE, text=label[5], font=("微软雅黑", 10)).grid(row=1, column=5) 
Label(LOVE, text=label[6], font=("微软雅黑", 10)).grid(row=1, column=6) 
Label(LOVE, text=label[7], font=("微软雅黑", 10)).grid(row=1, column=7) 
#编辑框位置和字体 
en1=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en1.grid(row=2, column=0) 
en2=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en2.grid(row=2, column=1) 
en3=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en3.grid(row=2, column=2) 
en4=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en4.grid(row=2, column=3) 
en5=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en5.grid(row=2, column=4) 
en6=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en6.grid(row=2, column=5) 
en7=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en7.grid(row=2, column=6) 
en8=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en8.grid(row=2, column=7) 
Label(LOVE, text="", font=("微软雅黑", 10)).grid(row=3, column=0) 
#测试输入框预测 
def pp(): 
    x=np.array([int(en1.get()),int(en2.get()),int(en3.get()),int(en4.get()),int(en5.get()),int(en6.get()),int(en7.get()),int(en8.get())]) 
    # 预测效果 
    predict = reg.predict(np.array([x])) 
    Label(LOVE, text="预测结果已使用年数为:"+str(predict[0])+"年", font=("微软雅黑", 10)).grid(row=4, column=3) 
    print(predict) 
Button(LOVE, text="预测:", font=("微软雅黑", 15),command=pp).grid(row=4, column=0) 
Label(LOVE, text="2、选择文件预测", font=("微软雅黑", 20)).grid(row=5, column=0) 
path1 = StringVar() 
label1 = tk.Label(LOVE,text="目标路径:", font=("微软雅黑", 10)) 
label1.grid(row=6, column=0) 
e1 = tk.Entry(LOVE,textvariable=path1, font=("微软雅黑", 10)) 
e1.grid(row=6, column=2) 
label = ["上升沿斜率(v/us)", "下降沿斜率(v/us)", "脉宽(ns)", "低状态电平(mv)", "低电平方差(mv2)x10-3", "高状态电平(v)", "高电平方差(v2)", 
             "信号质量因子"] 
    n = 0 
    for i in predict_value: 
        print(str(label) + "分别为" + str(X[n]) + "预测出来的结果为:" + str(i) + "年" + "\n") 
        f = open("预测结果.txt", "a") 
        f.write(str(label) + "分别为" + str(X[n]) + "预测出来的结果为:" + str(i) + "年" + "\n") 
        f.close() 
        f = open("result.txt", "a") 
        f.write(str(i) + "\n") 
        f.close() 
        n += 1 
    messagebox.showinfo(title='模型情况', message="预测结果保存在当前文件夹下的TXT文件中!") 
    os.system("result.txt") 
    os.system("预测结果.txt") 
Button(LOVE, text="预测:", font=("微软雅黑", 15), command=ppt).grid(row=7, column=0) 

效果如下可见:

Get了!用Python制作数据预测集成工具

选择文件进行读取预测和模型训练数据的读取类似,代码如下:

#选择文件预测 
def selectPath1(): 
    # 选择文件path_接收文件地址 
    path_ =tkinter.filedialog.askopenfilename() 
    # 通过replace函数替换绝对文件地址中的/来使文件可被程序读取 
    # 注意:\\转义后为\,所以\\\\转义后为\\ 
    path_ =path_.replace("/", "\\\\") 
    # path设置path_的值 
    path1.set(path_) 
    return path 
bn1 = tk.Button(LOVE,text="路径选择", font=("微软雅黑", 10), command=selectPath1) 
bn1.grid(row=6, column=6) 
def ppt(): 
    try: 
        os.remove("预测结果.txt") 
        os.remove("result.txt") 
    except: 
        pass 
    # 文件的名字 
    FILENAME =path1.get() 
    # 禁用科学计数法 
    pd.set_option('float_format', lambda x: '%.3f' % x) 
    np.set_printoptions(threshold=np.inf) 
    # 得到的DataFrame读入所有数据 
    data =pd.read_excel(FILENAME, header=0, usecols="A,B,C,D,E,F,G,H") 
    # DataFrame转化为array 
    DataArray =data.values 
    # 读取其他参数作为自变量,影响因素 
    X = DataArray[:,0:8] 
    predict_value = reg.predict(X) 
    print(predict_value) 

效果如下:

Get了!用Python制作数据预测集成工具

由于读取文件进行预测的话,数据较多故直接存储在TXT中方便查看:

Get了!用Python制作数据预测集成工具

【编辑推荐】

  1. 用Python自动群发邮件给欠钱老赖,哭着喊着把钱还你
  2. DevOps工具链全接触
  3. 突然登上GitHub热榜!谷歌的这款测试工具,别告诉我你不知道
  4. 用Python实现一款永久免费的PDF编辑工具
  5. 10 个加速Python数据分析的简单的小技巧

【责任编辑:华轩 TEL:(010)68476606】

扫码领视频副本.gif

0

精彩评论

暂无评论...
验证码 换一张
取 消

关注公众号