真的需要你的帮助来理解,我做错了什么.
我的实验的目的是以编程方式运行spark作业,而不是使用./spark-shell或./spark-submit(这些都适用于我)
环境:
我创建了一个Spark集群,其中包含1个master& 1名工人使用./spark-ec2脚本但是,当我尝试运行打包在jar中的代码时,群集看起来很好:
val logFile = "file:///root/spark/bin/README.md" val conf = new SparkConf() conf.setAppName("Simple App") conf.setJars(List("file:///root/spark/bin/hello-apache-spark_2.10-1.0.0-SNAPSHOT.jar")) conf.setMaster("spark://ec2-54-89-51-36.compute-1.amazonaws.com:7077") val sc = new SparkContext(conf) val logData = sc.textFile(logFile, 2).cache() val numAs = logData.filter(_.contains("a")).count() val numBs = logData.filter(_.contains("b")).count() println(s"1. Lines with a: $numAs, Lines with b: $numBs")
我得到一个例外:
*[info] Running com.paycasso.SimpleApp 14/09/05 14:50:29 INFO SecurityManager: Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties 14/09/05 14:50:29 INFO SecurityManager: Changing view acls to: root 14/09/05 14:50:29 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root) 14/09/05 14:50:30 INFO Slf4jLogger: Slf4jLogger started 14/09/05 14:50:30 INFO Remoting: Starting remoting 14/09/05 14:50:30 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://spark@ip-10-224-14-90.ec2.internal:54683] 14/09/05 14:50:30 INFO Remoting: Remoting now listens on addresses: [akka.tcp://spark@ip-10-224-14-90.ec2.internal:54683] 14/09/05 14:50:30 INFO SparkEnv: Registering MapOutputTracker 14/09/05 14:50:30 INFO SparkEnv: Registering BlockManagerMaster 14/09/05 14:50:30 INFO DiskBlockManager: Created local directory at /tmp/spark-local-20140905145030-85cb 14/09/05 14:50:30 INFO MemoryStore: MemoryStore started with capacity 589.2 MB. 14/09/05 14:50:30 INFO ConnectionManager: Bound socket to port 47852 with id = ConnectionManagerId(ip-10-224-14-90.ec2.internal,47852) 14/09/05 14:50:30 INFO BlockManagerMaster: Trying to register BlockManager 14/09/05 14:50:30 INFO BlockManagerInfo: Registering block manager ip-10-224-14-90.ec2.internal:47852 with 589.2 MB RAM 14/09/05 14:50:30 INFO BlockManagerMaster: Registered BlockManager 14/09/05 14:50:30 INFO HttpServer: Starting HTTP Server 14/09/05 14:50:30 INFO HttpBroadcast: Broadcast server started at http://**.***.**.**:49211 14/09/05 14:50:30 INFO HttpFileServer: HTTP File server directory is /tmp/spark-e2748605-17ec-4524-983b-97aaf2f94b30 14/09/05 14:50:30 INFO HttpServer: Starting HTTP Server 14/09/05 14:50:31 INFO SparkUI: Started SparkUI at http://ip-10-224-14-90.ec2.internal:4040 14/09/05 14:50:31 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 14/09/05 14:50:32 INFO SparkContext: Added JAR file:///root/spark/bin/hello-apache-spark_2.10-1.0.0-SNAPSHOT.jar at http://**.***.**.**:46491/jars/hello-apache-spark_2.10-1.0.0-SNAPSHOT.jar with timestamp 1409928632274 14/09/05 14:50:32 INFO AppClient$ClientActor: Connecting to master spark://ec2-54-89-51-36.compute-1.amazonaws.com:7077... 14/09/05 14:50:32 INFO MemoryStore: ensureFreeSpace(163793) called with curMem=0, maxMem=617820979 14/09/05 14:50:32 INFO MemoryStore: Block broadcast_0 stored as values to memory (estimated size 160.0 KB, free 589.0 MB) 14/09/05 14:50:32 INFO SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20140905145032-0005 14/09/05 14:50:32 INFO AppClient$ClientActor: Executor added: app-20140905145032-0005/0 on worker-20140905141732-ip-10-80-90-29.ec2.internal-57457 (ip-10-80-90-29.ec2.internal:57457) with 2 cores 14/09/05 14:50:32 INFO SparkDeploySchedulerBackend: Granted executor ID app-20140905145032-0005/0 on hostPort ip-10-80-90-29.ec2.internal:57457 with 2 cores, 512.0 MB RAM 14/09/05 14:50:32 INFO AppClient$ClientActor: Executor updated: app-20140905145032-0005/0 is now RUNNING 14/09/05 14:50:33 INFO FileInputFormat: Total input paths to process : 1 14/09/05 14:50:33 INFO SparkContext: Starting job: count at SimpleApp.scala:26 14/09/05 14:50:33 INFO DAGScheduler: Got job 0 (count at SimpleApp.scala:26) with 1 output partitions (allowLocal=false) 14/09/05 14:50:33 INFO DAGScheduler: Final stage: Stage 0(count at SimpleApp.scala:26) 14/09/05 14:50:33 INFO DAGScheduler: Parents of final stage: List() 14/09/05 14:50:33 INFO DAGScheduler: Missing parents: List() 14/09/05 14:50:33 INFO DAGScheduler: Submitting Stage 0 (FilteredRDD[2] at filter at SimpleApp.scala:26), which has no missing parents 14/09/05 14:50:33 INFO DAGScheduler: Submitting 1 missing tasks from Stage 0 (FilteredRDD[2] at filter at SimpleApp.scala:26) 14/09/05 14:50:33 INFO TaskSchedulerImpl: Adding task set 0.0 with 1 tasks 14/09/05 14:50:36 INFO SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@ip-10-80-90-29.ec2.internal:36966/user/Executor#2034537974] with ID 0 14/09/05 14:50:36 INFO TaskSetManager: Starting task 0.0:0 as TID 0 on executor 0: ip-10-80-90-29.ec2.internal (PROCESS_LOCAL) 14/09/05 14:50:36 INFO TaskSetManager: Serialized task 0.0:0 as 1880 bytes in 8 ms 14/09/05 14:50:37 INFO BlockManagerInfo: Registering block manager ip-10-80-90-29.ec2.internal:59950 with 294.9 MB RAM 14/09/05 14:50:38 WARN TaskSetManager: Lost TID 0 (task 0.0:0) 14/09/05 14:50:38 WARN TaskSetManager: Loss was due to java.io.EOFException java.io.EOFException at java.io.ObjectInputStream$BlockDataInputStream.readFully(ObjectInputStream.java:2744) at java.io.ObjectInputStream.readFully(ObjectInputStream.java:1032) at org.apache.hadoop.io.DataOutputBuffer$Buffer.write(DataOutputBuffer.java:63) at org.apache.hadoop.io.DataOutputBuffer.write(DataOutputBuffer.java:101) at org.apache.hadoop.io.UTF8.readChars(UTF8.java:216) at org.apache.hadoop.io.UTF8.readString(UTF8.java:208) at org.apache.hadoop.mapred.FileSplit.readFields(FileSplit.java:87) at org.apache.hadoop.io.ObjectWritable.readObject(ObjectWritable.java:237) at org.apache.hadoop.io.ObjectWritable.readFields(ObjectWritable.java:66) at org.apache.spark.SerializableWritable.readObject(SerializableWritable.scala:42) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1893) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370) at org.apache.spark.scheduler.ResultTask.readExternal(ResultTask.scala:147) at java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1837) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370) at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:63) at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:85) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:165) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745)*
我实际上正在做的是打电话“sbt run”.所以我组装了scala项目并运行它.
顺便说一下,我在主控主机上运行该项目,因此驱动程序绝对可见于工作主机.任何帮助表示赞赏.这很奇怪,这样一个简单的例子在集群中不起作用.我相信使用./spark-submit并不方便.提前致谢. 浪费了很多时间后,我发现了问题.尽管我没有在我的应用程序中使用hadoop / hdfs,但hadoop客户端很重要.问题出在hadoop-client版本,它与hadoop的版本不同,spark是为其构建的. Spark的hadoop版本为1.2.1,但在我的应用程序中为2.4.当我在我的应用程序中将hadoop客户端的版本更改为1.2.1时,我能够在群集上执行spark代码.
精彩评论